Creative Bioarray
  • USA:
  • Europe:
LOGO
  • Home
    • About Us
    • Contact Us
    • Events
  • Screening
    • Ionic Screening Service
      • Ion Flux Assay
      • Fluorescence Assay
      • Patch-clamp Assay
    • Ionic Screening Panel
      • Sodium Channels
      • Potassium Channels
      • Chloride Channels
      • Calcium Channels
      • TRP Channels
      • ATP gated P2X Channels
      • ASICs
      • Nicotinic Acetylcholine Receptors
      • Ionotropic Glutamate-gated Receptors
      • GABAa Receptors
      • Glycine Receptors
      • 5-HT Receptors3
      • Cystic Fibrosis Transmembrane Conductance Regulators (CFTR)
      • Other Ion Channels
    • Stable Cell Lines
      • Ion Channel Expressing Cell
      • GPCR Expressing Cell
      • Other Membrane Receptors/Transporters/Exchangers Expression Cell
      • Customized Ionic Channel Expression System
  • Cardiology
    • Cardiac Ion Channel Screen Panels
      • HERG (IKR, KV11.1)
      • Cav1.2
      • Kv4.3
      • KCNQ1/mink/Kv7.1
      • Kir2.1
      • Nav1.5
      • Kv1.5
      • HCN1&HCN4
      • Other Ion Channels
    • CiPA
      • CiPA Cardiac Channel Assays
      • CiPA In silico Modeling
      • CiPA Translational Assays
    • 3D Cardiotoxicity
    • Cardiomyocyte Functions
      • Action Potential Properties
      • Calcium Transient in Cardiomyocytes
      • QT Service Using Langendorff Perfused Heart
    • Cardiac in vivo Assays
      • QRS, QT Waves Detection by ECG
  • Neurology
    • Neurotransmission Functions
      • sEPSC/sIPSC Recordings
      • fEPSP / Populational Spikes Recordings
      • LTP & LTD Formation or Deficit Detection
    • Basic Neuronal Activity
      • Action Potential Properties Assay
      • NMDA/AMPA Ratio Test
      • Calcium Signaling Test
      • Customized Electrophysiological Test
    • Neuronal in vivo Assays
      • In vivo Extra-cellular Recordings/Whole-cell Patch-clamp Recordings
      • Continuous Telemetric EEG Recordings
    • Animal Behavior Tests
      • Spontaneous Locomotor Functions
      • Cognitive Functions
      • Anxiety-Depression and Social Interaction Evaluation
      • Assays for Neuropsychiatric Disorders
  • Ophthalmology
  • Platform
    • Experiment Systems
      • Xenopus Oocyte Screening Model
      • Acute Isolated Cardiomyocytes
      • Acute Dissociated Neurons
      • Primary Cultured Neurons
      • Cultured Neuronal Cell Lines
      • iPSC-derived Cardiomyocytes/Neurons
      • Acute/Cultured Organotypic Brain Slices
      • Oxygen Glucose Deprivation Model
      • 3D Cell Culture
      • iPSC-derived Neurons
      • Isolation and culture of neural stem/progenitor cells
    • Animal Models
      • Alzheimer's Disease Model
      • Parkinson's Disease Model
      • Huntington's Disease Model
      • Epilepsy Model
      • ALS Model
      • Psychiatric Model
      • Autism Spectrum Disorder
      • Cerebral-Spinal Injury Model
      • Pain Model
      • Stroke Model
      • Fragile X Model
      • Acute/Chronic Heart Failure Model
    • Techinques
      • Manual Patch-clamp Technique
      • Automated Patch-clamp
      • Multi-Electrode Array (MEA)
      • FluxOR™ Thallium Assay
      • FLIPR Detection System
      • Optogenetics
      • Neuronal Tract Tracing
    • Resource
      • Technical Methods
      • Neuroscience
      • Channelopathies
      • Channelomics
    • Equipment
  • Order
  • Careers
  • Home
  • Cardiology
  • CiPA
  • CiPA In silico Modeling
  • Screening
  • Ionic Screening Service Ionic Screening Panel Stable Cell Lines
  • Cardiology
  • CiPA 3D Cardiotoxicity Cardiomyocyte Functions Cardiac in vivo Assays Cardiac Ion Channel Screen Panels
  • Neurology
  • Basic Neuronal Activity Neurotransmission Functions Neuronal in vivo Assays Animal Behavior Tests
  • Platform
  • Experiment Systems Animal Models Techinques Resource Equipment

CiPA In Silico Modeling

One of the aims of the CiPA initiative is to integrate data from patch-clamp experiments on a range of important ion channels with in silico simulations of cardiac electrical activity. In the second component of CiPA screening, electrophysiology data generated using the expanded panel of six ion channels is incorporated into an in silico human ventricular action potential model. However, the acquisition of advanced software suites and massive computing capabilities are available to anyone with resources they are willing to invest. What makes the real difference is experience. Here at Creative Bioarray, we are ready to support our customers in silico modeling. With our simulations we can help to make sense of your data.

2-2-2 CiPA In Silico Modeling.jpg

Fig. 1 Explanatory examples of in silico drug trial results in a population of human computational models, showing drug-induced changes on APD90 and dV/dtMAX (left and right column, respectively) for 5 compounds (Dofetilide I, Flecainide I, Nimodipine, Ranolazine I and Verapamil II)


In silico models of cardiac electrical activity have become very sophisticated in recent years, and allow a better understanding of the complex non-linear interactions between the different ionic currents and ion concentrations within the cell. Readout from the model predicts changes in the action potential duration, a surrogate marker for QT prolongation, and generation of early after depolarizations (EADs) – with appearance of EADs being highly indicative of proarrhymic liability.

Creative Bioarray will provide you with:

  • General advice on in silico modeling of cardiac electrical activity.

  • Implementation of a range of available cellular models.

  • Disease state modeling (e.g. hypertrophic cardiomyopathy, ischemia, long-QT syndromes).

  • Implementing ion channel block based on electrophysiology data, plotting and interpretation of results.

Creative Bioarray has long experience in drug discovery. Scientists in Creative Bioarray have long tenure as a collaborative group and a very high level of collective expertise with in silico drug discovery. Within Creative Bioarray CiPA Customized Project, we will greatly reduce the time to identify and optimize drug candidates.

Reference

  1. Cardiotoxicity P, et al. Human In Silico Drug Trials Demonstrate Higher Accuracy than Animal Models in Predicting Clinical. Front Physiol. 2017; 8: 1–15.


For research use only.

Related Section

  • CiPA Cardiac Channel Assays
  • CiPA Translational Assays

Inquiry


Subscribe
  • Links
  • Sodium Channels
  • Calcium Channels
  • Potassium Channels
  • Chloride Channels
  • TRP Channels
  • ATP gated P2X Channels
  • ASICs
  • USA
  • Europe

Copyright © 2025 Creative Bioarray. All rights reserved.