Creative Bioarray
  • USA:
  • Europe:
LOGO
  • Home
    • About Us
    • Contact Us
    • Events
  • Screening
    • Ionic Screening Service
      • Ion Flux Assay
      • Fluorescence Assay
      • Patch-clamp Assay
    • Ionic Screening Panel
      • Sodium Channels
      • Potassium Channels
      • Chloride Channels
      • Calcium Channels
      • TRP Channels
      • ATP gated P2X Channels
      • ASICs
      • Nicotinic Acetylcholine Receptors
      • Ionotropic Glutamate-gated Receptors
      • GABAa Receptors
      • Glycine Receptors
      • 5-HT Receptors3
      • Cystic Fibrosis Transmembrane Conductance Regulators (CFTR)
      • Other Ion Channels
    • Stable Cell Lines
      • Ion Channel Expressing Cell
      • GPCR Expressing Cell
      • Other Membrane Receptors/Transporters/Exchangers Expression Cell
      • Customized Ionic Channel Expression System
  • Cardiology
    • Cardiac Ion Channel Screen Panels
      • HERG (IKR, KV11.1)
      • Cav1.2
      • Kv4.3
      • KCNQ1/mink/Kv7.1
      • Kir2.1
      • Nav1.5
      • Kv1.5
      • HCN1&HCN4
      • Other Ion Channels
    • CiPA
      • CiPA Cardiac Channel Assays
      • CiPA In silico Modeling
      • CiPA Translational Assays
    • 3D Cardiotoxicity
    • Cardiomyocyte Functions
      • Action Potential Properties
      • Calcium Transient in Cardiomyocytes
      • QT Service Using Langendorff Perfused Heart
    • Cardiac in vivo Assays
      • QRS, QT Waves Detection by ECG
  • Neurology
    • Neurotransmission Functions
      • sEPSC/sIPSC Recordings
      • fEPSP / Populational Spikes Recordings
      • LTP & LTD Formation or Deficit Detection
    • Basic Neuronal Activity
      • Action Potential Properties Assay
      • NMDA/AMPA Ratio Test
      • Calcium Signaling Test
      • Customized Electrophysiological Test
    • Neuronal in vivo Assays
      • In vivo Extra-cellular Recordings/Whole-cell Patch-clamp Recordings
      • Continuous Telemetric EEG Recordings
    • Animal Behavior Tests
      • Spontaneous Locomotor Functions
      • Cognitive Functions
      • Anxiety-Depression and Social Interaction Evaluation
      • Assays for Neuropsychiatric Disorders
  • Ophthalmology
  • Platform
    • Experiment Systems
      • Xenopus Oocyte Screening Model
      • Acute Isolated Cardiomyocytes
      • Acute Dissociated Neurons
      • Primary Cultured Neurons
      • Cultured Neuronal Cell Lines
      • iPSC-derived Cardiomyocytes/Neurons
      • Acute/Cultured Organotypic Brain Slices
      • Oxygen Glucose Deprivation Model
      • 3D Cell Culture
      • iPSC-derived Neurons
      • Isolation and culture of neural stem/progenitor cells
    • Animal Models
      • Alzheimer's Disease Model
      • Parkinson's Disease Model
      • Huntington's Disease Model
      • Epilepsy Model
      • ALS Model
      • Psychiatric Model
      • Autism Spectrum Disorder
      • Cerebral-Spinal Injury Model
      • Pain Model
      • Stroke Model
      • Fragile X Model
      • Acute/Chronic Heart Failure Model
    • Techinques
      • Manual Patch-clamp Technique
      • Automated Patch-clamp
      • Multi-Electrode Array (MEA)
      • FluxOR™ Thallium Assay
      • FLIPR Detection System
      • Optogenetics
      • Neuronal Tract Tracing
    • Resource
      • Technical Methods
      • Neuroscience
      • Channelopathies
      • Channelomics
    • Equipment
  • Order
  • Careers
  • Home
  • Cardiology
  • Cardiac Ion Channel Screen Panels
  • Cav1.2
  • Screening
  • Ionic Screening Service Ionic Screening Panel Stable Cell Lines
  • Cardiology
  • CiPA 3D Cardiotoxicity Cardiomyocyte Functions Cardiac in vivo Assays Cardiac Ion Channel Screen Panels
  • Neurology
  • Basic Neuronal Activity Neurotransmission Functions Neuronal in vivo Assays Animal Behavior Tests
  • Platform
  • Experiment Systems Animal Models Techinques Resource Equipment

Cav1.2

Cav1.2 plays an important role in the contraction of the heart. It is particularly important and well known for its expression in the heart where it mediates L-type currents, which causes calcium-induced calcium release from the ER Stores via ryanodine receptors. The block of calcium current can lead to AV block and negative inotropy. Cav1.2 depolarizes at -30mV and helps define the shape of the action potential in cardiac and smooth muscle.

Cav1.2

Fig. 1 AngII increases twitch Ca2+ transients and L-type Ca2+ channel currents in immature cardiomyocytes.

Testing of compounds for interactions with Cav1.2 channel in Creative Bioarray identify potential cardiac risk in humans and can be used as a screen in development candidate selection.

Creative Bioarray currently provides manual patch clamp assay using acutely isolated animal cardiomyocytes or HEK 293-Cav 1.2 cell line to test drug's inhibition or potentiating effect on Cav1.2 channels. This assay is one of the preclinical cardiac safety assays highly recommended in the pharmaceutical industry.

Cav1.2/β2/α2δ1 (CACNA1C/CACNB2/CACNA2D1)

Tissue-specific Location: heart, smooth muscle, neurons and endocrine tissue.

Therapeutic Targets: cardiac arrhythmia and hypertension.

Reference

  1. Kashihara T, et al. Angiotensin II activates CaV1.2 Ca2+ channels through β-arrestin2 and casein kinase 2 in mouse immature cardiomyocytes. J Physiol. 2017; 595: 4207–4225.
For research use only.

Related Section

  • HERG (IKR, KV11.1)
  • Kv4.3
  • KCNQ1/mink/Kv7.1
  • Kir2.1
  • Nav1.5
  • Kv1.5
  • HCN1&HCN4
  • Other Ion Channels

Inquiry


Subscribe
  • Links
  • Sodium Channels
  • Calcium Channels
  • Potassium Channels
  • Chloride Channels
  • TRP Channels
  • ATP gated P2X Channels
  • ASICs
  • USA
  • Europe

Copyright © 2025 Creative Bioarray. All rights reserved.