Creative Bioarray
  • USA:
  • Europe:
LOGO
  • Home
    • About Us
    • Contact Us
    • Events
  • Screening
    • Ionic Screening Service
      • Ion Flux Assay
      • Fluorescence Assay
      • Patch-clamp Assay
    • Ionic Screening Panel
      • Sodium Channels
      • Potassium Channels
      • Chloride Channels
      • Calcium Channels
      • TRP Channels
      • ATP gated P2X Channels
      • ASICs
      • Nicotinic Acetylcholine Receptors
      • Ionotropic Glutamate-gated Receptors
      • GABAa Receptors
      • Glycine Receptors
      • 5-HT Receptors3
      • Cystic Fibrosis Transmembrane Conductance Regulators (CFTR)
      • Other Ion Channels
    • Stable Cell Lines
      • Ion Channel Expressing Cell
      • GPCR Expressing Cell
      • Other Membrane Receptors/Transporters/Exchangers Expression Cell
      • Customized Ionic Channel Expression System
  • Cardiology
    • Cardiac Ion Channel Screen Panels
      • HERG (IKR, KV11.1)
      • Cav1.2
      • Kv4.3
      • KCNQ1/mink/Kv7.1
      • Kir2.1
      • Nav1.5
      • Kv1.5
      • HCN1&HCN4
      • Other Ion Channels
    • CiPA
      • CiPA Cardiac Channel Assays
      • CiPA In silico Modeling
      • CiPA Translational Assays
    • 3D Cardiotoxicity
    • Cardiomyocyte Functions
      • Action Potential Properties
      • Calcium Transient in Cardiomyocytes
      • QT Service Using Langendorff Perfused Heart
    • Cardiac in vivo Assays
      • QRS, QT Waves Detection by ECG
  • Neurology
    • Neurotransmission Functions
      • sEPSC/sIPSC Recordings
      • fEPSP / Populational Spikes Recordings
      • LTP & LTD Formation or Deficit Detection
    • Basic Neuronal Activity
      • Action Potential Properties Assay
      • NMDA/AMPA Ratio Test
      • Calcium Signaling Test
      • Customized Electrophysiological Test
    • Neuronal in vivo Assays
      • In vivo Extra-cellular Recordings/Whole-cell Patch-clamp Recordings
      • Continuous Telemetric EEG Recordings
    • Animal Behavior Tests
      • Spontaneous Locomotor Functions
      • Cognitive Functions
      • Anxiety-Depression and Social Interaction Evaluation
      • Assays for Neuropsychiatric Disorders
  • Ophthalmology
  • Platform
    • Experiment Systems
      • Xenopus Oocyte Screening Model
      • Acute Isolated Cardiomyocytes
      • Acute Dissociated Neurons
      • Primary Cultured Neurons
      • Cultured Neuronal Cell Lines
      • iPSC-derived Cardiomyocytes/Neurons
      • Acute/Cultured Organotypic Brain Slices
      • Oxygen Glucose Deprivation Model
      • 3D Cell Culture
      • iPSC-derived Neurons
      • Isolation and culture of neural stem/progenitor cells
    • Animal Models
      • Alzheimer's Disease Model
      • Parkinson's Disease Model
      • Huntington's Disease Model
      • Epilepsy Model
      • ALS Model
      • Psychiatric Model
      • Autism Spectrum Disorder
      • Cerebral-Spinal Injury Model
      • Pain Model
      • Stroke Model
      • Fragile X Model
      • Acute/Chronic Heart Failure Model
    • Techinques
      • Manual Patch-clamp Technique
      • Automated Patch-clamp
      • Multi-Electrode Array (MEA)
      • FluxOR™ Thallium Assay
      • FLIPR Detection System
      • Optogenetics
      • Neuronal Tract Tracing
    • Resource
      • Technical Methods
      • Neuroscience
      • Channelopathies
      • Channelomics
    • Equipment
  • Order
  • Careers
  • Home
  • Platform
  • Resource
  • Neuroscience
  • Screening
  • Ionic Screening Service Ionic Screening Panel Stable Cell Lines
  • Cardiology
  • CiPA 3D Cardiotoxicity Cardiomyocyte Functions Cardiac in vivo Assays Cardiac Ion Channel Screen Panels
  • Neurology
  • Basic Neuronal Activity Neurotransmission Functions Neuronal in vivo Assays Animal Behavior Tests
  • Platform
  • Experiment Systems Animal Models Techinques Resource Equipment

Neuroscience

Neuroscience is an important branch of biology research, concerned with the study of the structure and function of the nervous system. It encompasses multiple disciplines related to the nervous system, as well as computational, behavioural and cognitive neuroscience.

Creative Bioarray is your ideal and reliable innovation partner in research endeavors. We have a comprehensive cell bank with a variety of specialized and unique stable cell lines expression ion channels that can be applied to a variety of in vitro research and in vivo pharmacology study instantly.

Featured Content

Neuropharmacology

Neuropharmacology, the study of drug actions on the nervous system, comprises several areas of critical importance to science and medicine, involving many aspects of the nervous system from single neuron manipulation to entire areas of the brain...

Learn More

Neurophysiology

The field of neurophysiology provides insight into how the nervous system works and how its dysfunction can lead to disease. Physiology is the study of how organisms and their parts function. Neurophysiology can be defined as the study of the functioning of the nervous system...

Learn More

Neurophysiology History

TimelineEvents
1600 BCThe Egyptians drafted the oldest surviving text mentioning the brain.
1771Luigi Galvani demonstrated that an electrical shock could make a dead frog muscle twitch. He claimed this effect was due to “animal electricity.”
1840sEmil Du Bois-Reymond was able to prove that animal electricity was actually a nerve impulse or "action potential."
1924Hans Berger recorded the electrical nature of global brain activity in humans by electroencephalography or EEG, a technique that is still widely used by today's neurophysiologists.
1939Alan Hodgkin and Andrew Huxley determined that neuron cell membranes allowed charged particles to flow in and out in a predictable manner in the squid giant axon.
1951Sir John Eccles figured out one critical way in which information is transmitted from one neuron to another. He described the chemical synapse where the electrical signal from one neuron is converted into a chemical signal that is received by a second neuron.
1976Erwin Neher and Bert Sakmann developed the patch-clamp technique, which provided a way to study the membranes of excitable cells in exquisite detail.
2005Karl Diesseroth, Ed Boyden, and Feng Zhang devised a revolutionary strategy called optogenetics to control the electrical properties of neurons by genetically engineering them to express light sensitive channels belonging to a family of proteins called “opsins.”. By activating these channels with targeted light, specific neurons can be excited or inhibited with a precision that was not previously possible, allowing for detailed manipulation of neuronal circuits.
For research use only.

Related Section

  • Technical Methods
  • Channelopathies
  • Channelomics

Inquiry


Subscribe
  • Links
  • Sodium Channels
  • Calcium Channels
  • Potassium Channels
  • Chloride Channels
  • TRP Channels
  • ATP gated P2X Channels
  • ASICs
  • USA
  • Europe

Copyright © 2025 Creative Bioarray. All rights reserved.